
PASEOS
Release v0.2.0

Pablo Gómez, Gabriele Meoni, Johan Östman, Vinutha Magal Shreenath

Sep 04, 2023

CONTENTS:

1 All content 1

2 PASEOS - PAseos Simulates the Environment for Operating multiple Spacecraft 17

3 About the project 19

4 PASEOS space environment simulation 21

5 Installation 23
5.1 pip / conda . 23
5.2 Building from source . 23
5.3 Using Docker . 24

6 Examples 25
6.1 Actors . 25
6.2 Physical Models . 27
6.3 Simulation Settings . 33
6.4 Activities . 36
6.5 Utilities . 41
6.6 Wrapping Other Software and Tools . 42

7 Glossary 45
7.1 Physical Model Parameters . 46

8 Contributing 49

9 License 51

10 Contact 53

11 Reference 55

12 Indices and tables 57

Python Module Index 59

Index 61

i

ii

CHAPTER

ONE

ALL CONTENT

This is the list of all content in paseos.

class paseos.ActorBuilder

Bases: object

This class is used to construct actors.

static add_comm_device(actor: BaseActor, device_name: str, bandwidth_in_kbps: float)
Creates a communication device.

Parameters

• device_name (str) – device_name of the communication device.

• bandwidth_in_kbps (float) – device bandwidth in kbps.

static add_custom_property(actor: BaseActor, property_name: str, initial_value: Any, update_function:
Callable)

Adds a custom property to the actor. This e.g. allows tracking any physical the user would like to track.

The update functions needs to take three parameters as input: the actor, the time to advance the state / model
and the current_power_consumption_in_W and return the new value of the custom property. The function
will be called with (actor,0,0) to check correctness.

Parameters

• actor (BaseActor) – The actor to add the custom property to.

• property_name (str) – The name of the custom property.

• initial_value (Any) – The initial value of the custom property.

• update_function (Callable) – The function to update the custom property.

static get_actor_scaffold(name: str, actor_type: object, epoch: epoch)
Initiates an actor with minimal properties.

Parameters

• name (str) – Name of the actor.

• actor_type (object) – Type of the actor (e.g. SpacecraftActor)

• epoch (pykep.epoch) – Current local time of the actor.

Returns
Created actor

1

PASEOS, Release v0.2.0

static set_TLE(actor: SpacecraftActor, line1: str, line2: str)
Define the orbit of the actor using a TLE. For more information on TLEs see https://en.wikipedia.org/wiki/
Two-line_element_set .

TLEs can be obtained from https://www.space-track.org/ or https://celestrak.com/NORAD/elements/

Parameters

• actor (SpacecraftActor) – Actor to update.

• line1 (str) – First line of the TLE.

• line2 (str) – Second line of the TLE.

Raises
RuntimeError – If the TLE could not be read.

static set_central_body(actor: ~paseos.actors.spacecraft_actor.SpacecraftActor, pykep_planet:
<module 'pykep.planet' from
'/home/docs/checkouts/readthedocs.org/user_builds/paseos/conda/latest/lib/python3.11/site-
packages/pykep/planet/__init__.py'>, mesh: tuple = None, radius: float =
None, rotation_declination: float = None, rotation_right_ascension: float =
None, rotation_period: float = None)

Define the central body of the actor. This is the body the actor is orbiting around.

If a mesh is provided, it will be used to compute visibility and eclipse checks. Otherwise, a sphere with the
provided radius will be used. One of the two has to be provided.

Note the specification here will not affect the actor orbit. For that, use set_orbit, set_TLE or
set_custom_orbit.

Parameters

• actor (SpacecraftActor) – Actor to update.

• pykep_planet (pk.planet) – Central body as a pykep planet in heliocentric frame.

• mesh (tuple) – A tuple of vertices and triangles defining a mesh.

• radius (float) – Radius of the central body in meters. Only used if no mesh is provided.

• rotation_declination (float) – Declination of the rotation axis in degrees in the

• 0. (the central body's inertial frame. Rotation at current actor
local time is presumed to be) –

• rotation_right_ascension (float) – Right ascension of the rotation axis in degrees
in

• 0. –

• rotation_period (float) – Rotation period in seconds. Rotation at current actor local
time is presumed to be 0.

static set_custom_orbit(actor: SpacecraftActor, propagator_func: Callable, epoch: epoch)
Define the orbit of the actor using a custom propagator function. The custom function has to return position
and velocity in meters and meters per second respectively. The function will be called with the current epoch
as the only parameter.

Parameters

• actor (SpacecraftActor) – Actor to update.

• propagator_func (Callable) – Function to propagate the orbit.

2 Chapter 1. All content

https://en.wikipedia.org/wiki/Two-line_element_set
https://en.wikipedia.org/wiki/Two-line_element_set
https://www.space-track.org/
https://celestrak.com/NORAD/elements/

PASEOS, Release v0.2.0

• epoch (pk.epoch) – Current epoch.

static set_ground_station_location(actor: GroundstationActor, latitude: float, longitude: float,
elevation: float = 0, minimum_altitude_angle: float = 30)

Define the position of a ground station actor.

Parameters

• actor (GroundstationActor) – Actor to update.

• latitude (float) – Latitude of the ground station in degrees.

• longitude (float) – Longitude of the ground station in degrees.

• elevation (float) – A distance specifying elevation above (positive)

• below (or) –

• 0. (ellipsoid specified by the WSG84 model in meters. Defaults to) –

• minimum_altitude_angle (float) – Minimum angle above the horizon that

• with. (this station can communicate) –

static set_orbit(actor: ~paseos.actors.spacecraft_actor.SpacecraftActor, position, velocity, epoch:
~pykep.core.core.epoch, central_body: <module 'pykep.planet' from
'/home/docs/checkouts/readthedocs.org/user_builds/paseos/conda/latest/lib/python3.11/site-
packages/pykep/planet/__init__.py'>)

Define the orbit of the actor

Parameters

• actor (BaseActor) – The actor to define on

• position (list of floats) – [x,y,z].

• velocity (list of floats) – [vx,vy,vz].

• epoch (pk.epoch) – Time of position / velocity.

• central_body (pk.planet) – Central body around which the actor is orbiting as a pykep
planet.

static set_position(actor: BaseActor, position: list)
Sets the actors position. Use this if you do not want the actor to have a keplerian orbit around a central
body.

Parameters

• actor (BaseActor) – Actor set the position on.

• position (list) – [x,y,z] position for SpacecraftActor.

static set_power_devices(actor: SpacecraftActor, battery_level_in_Ws: float,
max_battery_level_in_Ws: float, charging_rate_in_W: float,
power_device_type: PowerDeviceType = PowerDeviceType.SolarPanel)

Add a power device (battery + some charging mechanism (e.g. solar power)) to the actor. This will allow
constraints related to power consumption.

Parameters

• actor (SpacecraftActor) – The actor to add to.

• battery_level_in_Ws (float) – Current battery level in Watt seconds / Joule

• max_battery_level_in_Ws (float) – Maximum battery level in Watt seconds / Joule

3

PASEOS, Release v0.2.0

• charging_rate_in_W (float) – Charging rate of the battery in Watt

• power_device_type (PowerDeviceType) – Type of power device.

• SolarPanel. (Either "SolarPanel" or "RTG" at the moment. Defaults to)
–

static set_radiation_model(actor: SpacecraftActor, data_corruption_events_per_s: float,
restart_events_per_s: float, failure_events_per_s: float)

Enables the radiation model allowing data corruption, activities being interrupted by restarts and potentially
critical device failures. Set any of the passed rates to 0 to disable that particular model.

Parameters

• actor (SpacecraftActor) – The actor to add to.

• data_corruption_events_per_s (float) – Single bit of data being corrupted, events
per second,

• Upset (i.e. a Single Event) –

• restart_events_per_s (float) – Device restart being triggered, events per second.

• failure_events_per_s (float) – Complete device failure, events per second, i.e. a
Single Event Latch-Up (SEL).

static set_thermal_model(actor: SpacecraftActor, actor_mass: float, actor_initial_temperature_in_K:
float, actor_sun_absorptance: float, actor_infrared_absorptance: float,
actor_sun_facing_area: float, actor_central_body_facing_area: float,
actor_emissive_area: float, actor_thermal_capacity: float,
body_solar_irradiance: float = 1360, body_surface_temperature_in_K: float
= 288, body_emissivity: float = 0.6, body_reflectance: float = 0.3,
power_consumption_to_heat_ratio: float = 0.5)

Add a thermal model to the actor to model temperature based on heat flux from sun, central body albedo,
central body IR, actor IR emission and due to actor activities. For the moment, it is a slightly simplified
version of the single node model from “Spacecraft Thermal Control” by Prof. Isidoro Martínez available
at http://imartinez.etsiae.upm.es/~isidoro/tc3/Spacecraft%20Thermal%20Modelling%20and%20Testing.
pdf

Parameters

• actor (SpacecraftActor) – Actor to model.

• actor_mass (float) – Actor’s mass in kg.

• actor_initial_temperature_in_K (float) – Actor’s initial temperature in K.

• actor_sun_absorptance (float) – Actor’s absorptance ([0,1]) of solar light

• actor_infrared_absorptance (float) – Actor’s absportance ([0,1]) of IR.

• actor_sun_facing_area (float) – Actor area facing the sun in m^2.

• actor_central_body_facing_area (float) – Actor area facing central body in m^2.

• actor_emissive_area (float) – Actor area emitting (radiating) heat.

• actor_thermal_capacity (float) – Actor’s thermal capacity in J / (kg * K).

• body_solar_irradiance (float, optional) – Irradiance from the sun in W. Defaults
to 1360.

• body_surface_temperature_in_K (float, optional) – Central body surface tem-
perature. Defaults to 288.

4 Chapter 1. All content

http://imartinez.etsiae.upm.es/~isidoro/tc3/Spacecraft%20Thermal%20Modelling%20and%20Testing.pdf
http://imartinez.etsiae.upm.es/~isidoro/tc3/Spacecraft%20Thermal%20Modelling%20and%20Testing.pdf

PASEOS, Release v0.2.0

• body_emissivity (float, optional) – Centrla body emissivity [0,1] in IR. Defaults
to 0.6.

• body_reflectance (float, optional) – Central body reflectance of sun light. De-
faults to 0.3.

• power_consumption_to_heat_ratio (float, optional) – Conversion ratio for ac-
tivities.

• 0.5. (0 leads to know heat-up due to activity. Defaults to) –

class paseos.BaseActor(name: str, epoch: epoch)
Bases: ABC

This (abstract) class is the baseline implementation of an actor (e.g. spacecraft, ground station) in the simulation.
The abstraction allows some actors to have e.g. limited power (spacecraft) and others not to.

property central_body: CentralBody

Returns the central body this actor is orbiting.

charge(duration_in_s: float)
Charges the actor from now for that period. Note that it is only verified the actor is neither at start nor end
of the period in eclipse, thus short periods are preferable.

Parameters
duration_in_s (float) – How long the activity is performed in seconds

property communication_devices: DotMap

Returns the communications devices.

Returns
Dictionary (DotMap) of communication devices.

Return type
DotMap

property current_activity: str

Returns the name of the activity the actor is currently performing.

Returns
Activity name. None if no activity being performed.

Return type
str

property custom_properties

Returns a dictionary of custom properties for this actor.

discharge(consumption_rate_in_W: float, duration_in_s: float)
Discharge battery depending on power consumption. Not implemented by default.

Parameters

• consumption_rate_in_W (float) – Consumption rate of the activity in Watt

• duration_in_s (float) – How long the activity is performed in seconds

get_altitude(t0: epoch = None)→ float
Returns altitude above [0,0,0]. Will only compute if not computed for this timestep.

Parameters
t0 (pk.epoch) – Epoch to get altitude at. Defaults to local time.

5

PASEOS, Release v0.2.0

Returns
Altitude in meters.

Return type
float

get_custom_property(property_name: str)→ Any
Returns the value of the specified custom property.

Parameters
property_name (str) – The name of the custom property.

Returns
The value of the custom property.

Return type
Any

get_custom_property_update_function(property_name: str)→ Callable
Returns the update function for the specified custom property.

Parameters
property_name (str) – The name of the custom property.

Returns
The update function for the custom property.

Return type
Callable

get_position(epoch: epoch)
Compute the position of this actor at a specific time. Requires orbital parameters or position set.

Parameters
epoch (pk.epoch) – Time as pykep epoch

Returns
[x,y,z] in meters

Return type
np.array

get_position_velocity(epoch: epoch)
Compute the position / velocity of this actor at a specific time. Requires orbital parameters set.

Parameters
epoch (pk.epoch) – Time as pykep epoch.

Returns
[x,y,z] in meters

Return type
np.array

property has_central_body: bool

Returns true if actor has a central body, else false.

Returns
bool indicating presence.

Return type
bool

6 Chapter 1. All content

PASEOS, Release v0.2.0

property has_power_model: bool

Returns true if actor’s battery is modeled, else false.

Returns
bool indicating presence.

Return type
bool

property has_radiation_model: bool

Returns true if actor’s temperature is modeled, else false.

Returns
bool indicating presence.

Return type
bool

property has_thermal_model: bool

Returns true if actor’s temperature is modeled, else false.

Returns
bool indicating presence.

Return type
bool

is_in_eclipse(t: epoch = None)
Checks if the actors is in eclipse at the specified time.

Parameters
t (pk.epoch, optional) – Time to check, if None will use current local actor time.

is_in_line_of_sight(other_actor: BaseActor, epoch: epoch, minimum_altitude_angle: float = None,
plot=False)

Determines whether a position is in line of sight of this actor

Parameters

• other_actor (BaseActor) – The actor to check line of sight with

• epoch (pk,.epoch) – Epoch at which to check the line of sight

• minimum_altitude_angle (float) – The altitude angle (in degree) at which the actor
has

• 90. (to be in relation to the ground station position to be visible.
It has to be between 0 and) –

• station. (Only relevant if one of the actors is a ground) –

• plot (bool) – Whether to plot a diagram illustrating the positions.

Returns
true if in line-of-sight.

Return type
bool

property local_time: epoch

Returns local time of the actor as pykep epoch. Use e.g. epoch.mjd2000 to get time in days.

Returns
local time of the actor

7

PASEOS, Release v0.2.0

Return type
pk.epoch

property mass: float

Returns actor’s mass in kg.

Returns
Mass

Return type
float

name = None

set_custom_property(property_name: str, value: Any)→ None
Sets the value of the specified custom property.

Parameters

• property_name (str) – The name of the custom property.

• value (Any) – The value to set for the custom property.

set_time(t: epoch)
Updates the local time of the actor.

Parameters
t (pk.epoch) – Local time to set to.

class paseos.CentralBody(planet: <module 'pykep.planet' from
'/home/docs/checkouts/readthedocs.org/user_builds/paseos/conda/latest/lib/python3.11/site-
packages/pykep/planet/__init__.py'>, initial_epoch: ~pykep.core.core.epoch, mesh:
tuple = None, encompassing_sphere_radius: float = None, rotation_declination:
float = None, rotation_right_ascension: float = None, rotation_period: float =
None)

Bases: object

Class representing a central body. This can be the Earth but also any other user-defined body in the solar system.

blocks_sun(actor, t: epoch, plot=False)→ bool
Checks whether the central body blocks the sun for the given actor.

Parameters

• actor (SpacecraftActor) – The actor to check

• t (pk.epoch) – Epoch at which to check

• plot (bool) – Whether to plot a diagram illustrating the positions.

Returns
True if the central body blocks the sun

Return type
bool

is_between_actors(actor_1, actor_2, t: epoch, plot=False)→ bool
Checks whether the central body is between the two actors.

Parameters

• actor_1 (SpacecraftActor) – First actor

8 Chapter 1. All content

PASEOS, Release v0.2.0

• actor_2 (SpacecraftActor) – Second actor

• t (pk.epoch) – Epoch at which to check

• plot (bool) – Whether to plot a diagram illustrating the positions.

Returns
True if the central body is between the two actors

Return type
bool

is_between_points(point_1, point_2, t: epoch, reference_frame: ReferenceFrame =
ReferenceFrame.CentralBodyInertial, plot: bool = False)→ bool

Checks whether the central body is between the two points.

Parameters

• point_1 (np.array) – First point

• point_2 (np.array) – Second point

• t (pk.epoch) – Epoch at which to check

• reference_frame (ReferenceFrame, optional) – Reference frame of the points.

• ReferenceFrame.CentralBodyInertial. (Defaults to) –

• plot (bool) – Whether to plot a diagram illustrating the positions.

Returns
True if the central body is between the two points

Return type
bool

property planet

class paseos.GroundstationActor(name: str, epoch: epoch)
Bases: BaseActor

This class models a groundstation actor.

get_position(epoch: epoch)
Compute the position of this ground station at a specific time. Positions are in J2000 geocentric reference
frame, same reference frame as for the spacecraft actors. Since the Earth is rotating, ground stations have
a non-constant position depending on time.

Parameters
epoch (pk.epoch) – Time as pykep epoch

Returns
[x,y,z] in meters

Return type
np.array

class paseos.PASEOS(local_actor: BaseActor, cfg)
Bases: object

This class serves as the main interface with the user.

9

PASEOS, Release v0.2.0

add_known_actor(actor: BaseActor)
Adds an actor to the simulation.

Parameters
actor (BaseActor) – Actor to add

advance_time(time_to_advance: float, current_power_consumption_in_W: float, constraint_function:
function = None)

Advances the simulation by a specified amount of time

Parameters

• time_to_advance (float) – Time to advance in seconds.

• current_power_consumption_in_W (float) – Current power consumed per second in
Watt.

• constraint_function (FunctionType) – Constraint function which will be evaluated

• False. (every cfg.sim.activity_timestep seconds. Aborts the
advancement if) –

Returns
Time remaining to advance (or 0 if done)

Return type
float

empty_known_actors()

Clears the list of known actors.

get_cfg()→ DotMap
Returns the current cfg of the simulation

Returns
cfg

Return type
DotMap

property is_running_activity

Allows checking whether there is currently an activity running.

Returns
Yes if running an activity.

Return type
bool

property known_actor_names: list

Returns names of known actors.

Returns
List of names of known actors.

Return type
list

property known_actors: dict

Returns known actors.

Returns
Dictionary of the known actors.

10 Chapter 1. All content

PASEOS, Release v0.2.0

Return type
dict of BaseActor

property local_actor: BaseActor

Returns the local actor.

Returns
Local actor

Return type
BaseActor

property local_time: epoch

Returns local time of the actor as pykep epoch. Use e.g. epoch.mjd2000 to get time in days.

Returns
local time of the actor

Return type
pk.epoch

log_status()

Updates the status log.

model_data_corruption(data_shape: list, exposure_period_in_s: float)
Computes a boolean mask for each data element that has been corrupted.

Parameters

• data_shape (list) – Shape of the data to corrupt.

• exposure_period_in_s (float) – Period of radiation exposure.

Returns
Boolean mask which is True if an entry was corrupted.

Return type
np.array

property monitor

Access paseos operations monitor which tracks local actor attributes such as temperature or state of charge.

Returns
Monitor object.

Return type
OperationsMonitor

perform_activity(name: str, activity_func_args: list = None, termination_func_args: list = None,
constraint_func_args: list = None)

Perform the specified activity. Will advance the simulation if automatic clock is not disabled.

Parameters

• name (str) – Name of the activity

• power_consumption_in_watt (float, optional) – Power consumption of the

• None. (activity in seconds if not specified. Defaults to) –

• duration_in_s (float, optional) – Time to perform this activity. Defaults to 1.0.

Returns
Whether the activity was performed successfully.

11

PASEOS, Release v0.2.0

Return type
bool

register_activity(name: str, activity_function: coroutine, power_consumption_in_watt: float,
on_termination_function: coroutine = None, constraint_function: coroutine = None)

Registers an activity that can then be performed on the local actor.

Parameters

• name (str) – Name of the activity.

• activity_function (types.CoroutineType) – Function to execute during the activity.

• later. (Can accept a list of arguments to be specified) –

• power_consumption_in_watt (float) – Power consumption of the activity in W (per
second).

• on_termination_function (types.CoroutineType) – Function to execute when the
activities stops

• async. (False if they aren't. Needs to be) –

• later. –

• constraint_function (types.CoroutineType) – Function to evaluate if constraints
are still valid.

• valid (Should return True if constraints are) –

• async. –

• later. –

remove_activity(name: str)
Removes a registered activity

Parameters
name (str) – Name of the activity.

remove_known_actor(actor_name: str)
Remove an actor from the list of known actors.

Parameters
actor_name (str) – name of the actor to remove.

save_status_log_csv(filename)→ None
Saves the status log incl. all kinds of information such as battery charge, running activtiy, etc.

Parameters
filename (str) – File to save the log in.

property simulation_time: float

Get the current simulation time of this paseos instance in seconds since start.

Returns
Time since start in seconds.

Return type
float

async wait_for_activity()

This functions allows waiting for the currently running activity to finish.

12 Chapter 1. All content

PASEOS, Release v0.2.0

class paseos.PlotType(value, names=None, *, module=None, qualname=None, type=None, start=1,
boundary=None)

Bases: Enum

Describes the different plot types 1 - SpacePlot

SpacePlot = 1

class paseos.PowerDeviceType(value, names=None, *, module=None, qualname=None, type=None, start=1,
boundary=None)

Bases: Enum

Describes the different power device types 1 - Solar Panels 2 - Radioisotope Thermoelectric Generator (RTG)

RTG = 2

SolarPanel = 1

class paseos.ReferenceFrame(value, names=None, *, module=None, qualname=None, type=None, start=1,
boundary=None)

Bases: Enum

Enum for used reference frames.

CentralBodyInertial = 1

Heliocentric = 2

class paseos.SpacecraftActor(name: str, epoch: epoch)
Bases: BaseActor

This class models a spacecraft actor which in addition to pos, velocity also has additional constraints such as
power/battery.

property battery_level_in_Ws

Get the current battery level.

Returns
current battery level in wattseconds.

Return type
float

charge(duration_in_s: float)
Charges the actor from now for that period. Note that it is only verified the actor is neither at start nor end
of the period in eclipse, thus short periods are preferable.

Parameters
duration_in_s (float) – How long the activity is performed in seconds

property charging_rate_in_W

Get the current charging rate.

Returns
current charging rate in W.

Return type
float

13

PASEOS, Release v0.2.0

discharge(consumption_rate_in_W: float, duration_in_s: float)
Discharge battery depending on power consumption.

Parameters

• consumption_rate_in_W (float) – Consumption rate of the activity in Watt

• duration_in_s (float) – How long the activity is performed in seconds

property is_dead: bool

Returns whether the device experienced fatal radiation failure.

Returns
True if device is dead.

Return type
bool

property mass: float

Returns actor’s mass in kg.

Returns
Mass

Return type
float

property power_device_type

Get the power device type

Returns
Type of power device.

Return type
PowerDeviceType

set_is_dead()

Sets this device to “is_dead=True” indicating permanent damage.

set_was_interrupted()

Sets this device to “was_interrupted=True” indicating current activities were interrupted.

property state_of_charge

Get the current battery level as ratio of maximum.

Returns
current battery level ratio in [0,1].

Return type
float

property temperature_in_C: float

Returns the current temperature of the actor in C.

Returns
Actor temperature in Celsius.

Return type
float

14 Chapter 1. All content

PASEOS, Release v0.2.0

property temperature_in_K: float

Returns the current temperature of the actor in K.

Returns
Actor temperature in Kelvin.

Return type
float

property was_interrupted: bool

Returns whether the actor was interrupted in its activity.

Returns
True if device is interrupted.

Return type
bool

paseos.find_next_window(local_actor: BaseActor, local_actor_communication_link_name: str, target_actor:
BaseActor, search_window_in_s: float, t0: epoch, search_step_size: float = 10)

Returns the start time of the next window in the given timespan (if any).

Parameters

• local_actor (BaseActor) – Actor to find window from.

• local_actor_communication_link_name (str) – Name of the comm device.

• target_actor (BaseActor) – Actor find window with.

• search_window_in_s (float) – Size of the search window in s.

• t0 (pk.epoch) – Start time of the search.

• search_step_size (float) – Size of steps in the search. Defaults to 10.

Returns
Window start (pk.epoch), window length (float [s]), data (int [b]). None,0,0 if none found.

paseos.get_communication_window(local_actor: BaseActor, local_actor_communication_link_name: str,
target_actor: BaseActor, dt: float = 10.0, t0: epoch = None,
data_to_send_in_b: int = 9223372036854775807,
window_timeout_value_in_s=7200)

Returning the communication window and the amount of data that can be transmitted from the local to the target
actor.

Parameters

• local_actor (BaseActor) – Local actor.

• local_actor_communication_link_name (str) – Name of the local_actor’s communi-
cation link to use.

• target_actor (BaseActor) – other actor.

• dt (float) – Simulation timestep [s]. Defaults to 10.

• t0 (pk.epoch) – Current simulation time. Defaults to local time.

• data_to_send_in_b (int) – Amount of data to transmit [b]. Defaults to maxint.

• window_timeout_value_in_s (float, optional) – Timeout for estimating the com-
munication window. Defaults to 7200.0.

15

PASEOS, Release v0.2.0

Returns
Communication window start time. pk.epoch: Communication window end time. int: Data that
can be transmitted in the communication window [b].

Return type
pk.epoch

paseos.load_default_cfg()

Loads the default toml config file from the cfg folder.

paseos.plot(sim: PASEOS, plot_type: PlotType, filename: str = None)
Creates the animation object

Parameters

• sim (PASEOS) – simulation object

• plot_type (PlotType) – enum deciding what kind of plot object to be made

• filename (str, optional) – filename to save the animation to. Defaults to None.

Raises
ValueError – supplied plot type not supported

Returns
Animation object

Return type
Animation

paseos.set_log_level(log_level: str)
Set the log level for the logger.

Parameters
log_level (str) – The log level to set. Options are ‘TRACE’,’DEBUG’, ‘INFO’, ‘SUCCESS’,
‘WARNING’, ‘ERROR’, ‘CRITICAL’.

16 Chapter 1. All content

CHAPTER

TWO

PASEOS - PASEOS SIMULATES THE ENVIRONMENT FOR
OPERATING MULTIPLE SPACECRAFT

Disclaimer: This project is currently under development. Use at your own risk.

17

https://github.com/aidotse/paseos/actions/workflows/run_tests.yml

PASEOS, Release v0.2.0

18 Chapter 2. PASEOS - PAseos Simulates the Environment for Operating multiple Spacecraft

CHAPTER

THREE

ABOUT THE PROJECT

PASEOS is a Python module that simulates the environment to operate multiple spacecraft. In particular, PASEOS
offers the user some utilities to run their own activities by taking into account both operational and onboard (e.g.
limited-power-budget, radiation, and thermal effects) constraints. PASEOS is designed to be:

• open-source: the source code of PASEOS is available under a GPL license.

• fully decentralised: one instance of PASEOS shall be executed in every node, i.e. individual spacecraft (actor),
of the emulated spacecraft. Each instance of PASEOS is responsible for handling the user activities executed on
that node (the local actor) while keeping track of the status of the other nodes. In this way, the design of PASEOS
is completely decentralised and independent of the number of nodes of the constellation. Because of that, both
single-node and multi-node scenarios are possible.

• application-agnostic: each user operation that has to be executed on a node is modelled as an activity. The user
is only required to provide the code to run and some parameters (e.g., power consumption) for each activity. Thus,
activities can be any code the user wants to simulate running on a spacecraft and thereby PASEOS is completely
application-agnostic. Conceivable applications range from modelling constellations to training machine learning
methods.

The project is being developed by Φ-lab@Sweden in the frame of a collaboration between AI Sweden and the
European Space Agency to explore distributed edge learning for space applications. For more information on PASEOS
and Φ-lab@Sweden, please take a look at the recording of the Φ-lab@Sweden kick-off event.

19

https://www.ai.se/en/data-factory/f-lab-sweden
https://www.ai.se/en/
https://www.esa.int/
https://www.youtube.com/watch?v=KuFRCcNxLgo&t=2365s

PASEOS, Release v0.2.0

20 Chapter 3. About the project

CHAPTER

FOUR

PASEOS SPACE ENVIRONMENT SIMULATION

PASEOS allows simulating the effect of onboard and operational constraints on user-registered activities. The image
above showcases the different phenomena considered (or to be implemented) in PASEOS.

21

PASEOS, Release v0.2.0

22 Chapter 4. PASEOS space environment simulation

CHAPTER

FIVE

INSTALLATION

5.1 pip / conda

The recommended way to install PASEOS is via conda / mamba using

conda install paseos -c conda-forge

Alternatively, on Linux you can install via pip using

pip install paseos

The pip version requires Python 3.8.16 due to pykep’s limited support of pip.

5.2 Building from source

To build from source, first of all clone the GitHub repository as follows (Git required):

git clone https://github.com/aidotse/PASEOS.git

To install PASEOS you can use conda as follows:

cd PASEOS
conda env create -f environment.yml

This will create a new conda environment called PASEOS and install the required software packages. To activate the
new environment, you can use:

conda activate paseos

Alternatively, you can install PASEOS by using pip as follows:

cd PASEOS
pip install -e .

23

https://docs.conda.io/en/latest/
https://github.com/conda-forge/miniforge#mambaforge
https://esa.github.io/pykep/installation.html
https://github.com/aidotse/PASEOS.git
https://git-scm.com/
https://docs.conda.io/en/latest/
https://www.pypy.org/

PASEOS, Release v0.2.0

5.3 Using Docker

Two Docker images are available:

• paseos: corresponding to the latest release.

• paseos-nightly: based on the latest commit on the branch main.

If you want to install PASEOS using Docker, access the desired repository and follow the provided instructions.

24 Chapter 5. Installation

https://www.docker.com/
https://hub.docker.com/r/gabrielemeoni/paseos
https://hub.docker.com/r/gabrielemeoni/paseos-nightly

CHAPTER

SIX

EXAMPLES

The next examples will introduce you to the use of PASEOS.

Comprehensive, self-contained examples can also be found in the examples folder where you can find an example on:

• Modelling and analysing a large constellation with PASEOS

• Modelling distributed learning on heterogeneous data in a constellation

• Using PASEOS with MPI to run PASEOS on supercomputers

• Using PASEOS to model the task of onboard satellite volcanic eruptions detection

• An example showing how total ionizing dose could be considered using a PASEOS custom property

The following are small snippets on specific topics.

6.1 Actors

6.1.1 Create a PASEOS actor

The code snippet below shows how to create a PASEOS actor named mySat of type SpacecraftActor. pykep is used
to define the satellite epoch in format mjd2000 format. actors are created by using an ActorBuilder. The latter is
used to define the actor scaffold that includes the actor minimal properties. In this way, actors are built in a modular
fashion that enables their use also for non-space applications.

import pykep as pk
from paseos import ActorBuilder, SpacecraftActor

Define an actor of type SpacecraftActor of name mySat
sat_actor = ActorBuilder.get_actor_scaffold(name="mySat",

actor_type=SpacecraftActor,
epoch=pk.epoch(0))

25

https://esa.github.io/pykep/
https://en.wikipedia.org/wiki/Epoch_(astronomy)
https://en.wikipedia.org/wiki/Julian_day

PASEOS, Release v0.2.0

6.1.2 Local and Known Actors

Once you have instantiated a PASEOS simulation you can add other PASEOS actors (Known actors) to the simula-
tion. You can use this, e.g., to study communications between actors and to automatically monitor communication
windows. The next code snippet will add both a SpacecraftActor and a GroundstationActor (other_sat). An orbit is
set for other_sat, which is placed around Earth at position (x,y,z)=(-10000,0,0) and velocity (vx,vy,vz)=(0,
-8000,0) at epoch epoch=pk.epoch(0). The latter (grndStation) will be placed at coordinates (lat,lon)=(79.
002723, 14.642972) and elevation of 0 m. You cannot add a power device and an orbit to a GroundstationActor.

import pykep as pk
import paseos
from paseos import ActorBuilder, SpacecraftActor, GroundstationActor
Define the local actor as a SpacecraftActor of name mySat and its orbit
local_actor = ActorBuilder.get_actor_scaffold(name="mySat",

actor_type=SpacecraftActor,
epoch=pk.epoch(0))

ActorBuilder.set_orbit(
actor=local_actor,
position=[10000000, 0, 0],
velocity=[0, 8000.0, 0],
epoch=pk.epoch(0),
central_body=pk.planet.jpl_lp("earth"), # use Earth from pykep

)

Initialize PASEOS simulation
sim = paseos.init_sim(local_actor)

Create another SpacecraftActor
other_spacraft_actor = ActorBuilder.get_actor_scaffold(name="other_sat",

actor_type=SpacecraftActor,
epoch=pk.epoch(0))

Let's set the orbit of other_spacraft_actor.
ActorBuilder.set_orbit(actor=other_spacraft_actor,

position=[-10000000, 0, 0],
velocity=[0, -8000.0, 0],
epoch=pk.epoch(0), central_body=earth)

#Create GroundstationActor
grndStation = GroundstationActor(name="grndStation", epoch=pk.epoch(0))

#Set the ground station at lat lon 79.002723 / 14.642972
and its elevation 0m
ActorBuilder.set_ground_station_location(grndStation,

latitude=79.002723,
longitude=14.642972,
elevation=0)

Adding other_spacraft_actor to PASEOS.
sim.add_known_actor(other_spacraft_actor)

Adding grndStation to PASEOS.
sim.add_known_actor(grndStation)

26 Chapter 6. Examples

PASEOS, Release v0.2.0

6.2 Physical Models

6.2.1 Set an orbit for a PASEOS SpacecraftActor

Once you have defined a SpacecraftActor, you can assign a Keplerian orbit or use SGP4 (Earth orbit only).

Keplerian Orbit

To this aim, you need to define the central body the SpacecraftActor is orbiting around and specify its position and
velocity (in the central body’s inertial frame) and an epoch. In this case, we will use Earth as a central body.

import pykep as pk
from paseos import ActorBuilder, SpacecraftActor
Define an actor of type SpacecraftActor of name mySat
sat_actor = ActorBuilder.get_actor_scaffold(name="mySat",

actor_type=SpacecraftActor,
epoch=pk.epoch(0))

Define the central body as Earth by using pykep APIs.
earth = pk.planet.jpl_lp("earth")

Let's set the orbit of sat_actor.
ActorBuilder.set_orbit(actor=sat_actor,

position=[10000000, 0, 0],
velocity=[0, 8000.0, 0],
epoch=pk.epoch(0), central_body=earth)

SGP4 / Two-line element (TLE)

For using SGP4 / Two-line element (TLE) you need to specify the TLE of the SpacecraftActor. In this case, we will
use the TLE of the Sentinel-2A satellite from celestrak.

from paseos import ActorBuilder, SpacecraftActor
Define an actor of type SpacecraftActor
sat_actor = ActorBuilder.get_actor_scaffold(name="Sentinel-2A",

actor_type=SpacecraftActor,
epoch=pk.epoch(0))

Specify your TLE
line1 = "1 40697U 15028A 23188.15862373 .00000171 00000+0 81941-4 0 9994"
line2 = "2 40697 98.5695 262.3977 0001349 91.8221 268.3116 14.30817084419867"

Set the orbit of the actor
ActorBuilder.set_TLE(sat_actor, line1, line2)

6.2. Physical Models 27

https://en.wikipedia.org/wiki/Kepler_orbit
https://en.wikipedia.org/wiki/Simplified_perturbations_models
https://en.wikipedia.org/wiki/Inertial_frame_of_reference
https://en.wikipedia.org/wiki/Two-line_element_set
https://en.wikipedia.org/wiki/Sentinel-2
https://celestrak.com/

PASEOS, Release v0.2.0

Custom Propagators

You can define any kind of function you would like to determine actor positions and velocities. This allows integrating
more sophisticated propagators such as orekit. A dedicated example on this topic can be found in the examples folder.

In short, you need to define a propagator function that returns the position and velocity of the actor at a given time. The
function shall take the current epoch as arguments. You can then set the propagator function with

import pykep as pk
from paseos import ActorBuilder, SpacecraftActor
Create a SpacecraftActor
starting_epoch = pk.epoch(42)
my_sat = ActorBuilder.get_actor_scaffold(

name="my_sat", actor_type=SpacecraftActor, epoch=starting_epoch
)

Define a custom propagator function that just returns a sinus position
def my_propagator(epoch: pk.epoch):
position,velocity = your_external_propagator(epoch)
return position,velocity

Set the custom propagator
ActorBuilder.set_custom_orbit(my_sat, my_propagator, starting_epoch)

Accessing the orbit

You can access the orbit of a SpacecraftActor with

Position, velocity and altitude can be accessed like this
t0 = pk.epoch("2022-06-16 00:00:00.000") # Define the time (epoch)
print(sat_actor.get_position(t0))
print(sat_actor.get_position_velocity(t0))
print(sat_actor.get_altitude(t0))

6.2.2 How to add a communication device

The following code snippet shows how to add a communication device to a [SpacecraftActors] (#spacecraftactor).
A communication device is needed to model the communication between [SpacecraftActors] (#spacecraftactor) or a
SpacecraftActor and GroundstationActor. Currently, given the maximum transmission data rate of a communication
device, PASEOS calculates the maximum data that can be transmitted by multiplying the transmission data rate by
the length of the communication window. The latter is calculated by taking the period for which two actors are in
line-of-sight into account.

import pykep as pk
from paseos import ActorBuilder, SpacecraftActor
Define an actor of type SpacecraftActor of name mySat
sat_actor = ActorBuilder.get_actor_scaffold(name="mySat",

actor_type=SpacecraftActor,
epoch=pk.epoch(0))

Add a communication device
ActorBuilder.add_comm_device(actor=sat_actor,

Communication device name
(continues on next page)

28 Chapter 6. Examples

https://www.orekit.org/

PASEOS, Release v0.2.0

(continued from previous page)

device_name="my_communication_device",
Bandwidth in kbps.
bandwidth_in_kbps=100000)

6.2.3 How to add a power device

The following code snippet shows how to add a power device to a SpacecraftActor. Moreover, PASEOS assumes that
the battery will be charged by solar panels, which will provide energy thanks to the incoming solar radiation when the
spacecraft is not eclipsed. Charging and discharging happens automatically during activities.

import pykep as pk
import paseos
from paseos import ActorBuilder, SpacecraftActor
Define an actor of type SpacecraftActor of name mySat
sat_actor = ActorBuilder.get_actor_scaffold(name="mySat",

actor_type=SpacecraftActor,
epoch=pk.epoch(0))

Add a power device
ActorBuilder.set_power_devices(actor=sat_actor,

battery_level_in_Ws=100, # current level
max_battery_level_in_Ws=2000,
charging_rate_in_W=10,
power_device_type=paseos.PowerDeviceType.SolarPanel)

Alternatively to the default paseos.PowerDeviceType.SolarPanel you can also use paseos.PowerDeviceType.
RTG. The only difference at the moment is that RTGs also charge in eclipse.

Note that at the moment only one power device is supported. Adding another will override the existing one.

You can check the battery’s state of charge and level in Ws with:

print(my_actor.state_of_charge)
print(my_actor.battery_level_in_Ws)

6.2.4 Thermal Modelling

To model thermal constraints on spacecraft we utilize a model inspired by the one-node model described in Martínez
- Spacecraft Thermal Modelling and Test. Thus, we model the change in temperature as

$$mc , \frac{dT}{dt} = \dot{Q}{solar} + \dot{Q}{albedo} + \dot{Q}{central_body_IR} - \dot{Q}{dissipated} +
\dot{Q}_{activity}.$$

This means your spacecraft will heat up due to being in sunlight, albedo reflections, infrared radiation emitted by the
central body as well as due to power consumption of activities. It will cool down due to heat dissipation.

The model is only available for a SpacecraftActor and (like all the physical models) only evaluated for the local actor.

The following parameters have to be specified for this:

• Spacecraft mass [kg], initial temperature [K], emissive area (for heat dissipation) and thermal capacity [J / (kg *
K)]

• Spacecraft absorptance of Sun light, infrared light. [0 to 1]

• Spacecraft area [m^2] facing Sun and central body, respectively

6.2. Physical Models 29

https://en.wikipedia.org/wiki/Radioisotope_thermoelectric_generator
http://imartinez.etsiae.upm.es/~isidoro/tc3/Spacecraft%20Thermal%20Modelling%20and%20Testing.pdf
http://imartinez.etsiae.upm.es/~isidoro/tc3/Spacecraft%20Thermal%20Modelling%20and%20Testing.pdf

PASEOS, Release v0.2.0

• Solar irradiance in this orbit [W] (defaults to 1360W)

• Central body surface temperature [k] (defaults to 288K)

• Central body emissivity and reflectance [0 to 1] (defaults to 0.6 and 0.3)

• Ratio of power converted to heat (defaults to 0.5)

To use it, simply equip your SpacecraftActor with a thermal model with:

from paseos import SpacecraftActor, ActorBuilder
my_actor = ActorBuilder.get_actor_scaffold("my_actor", SpacecraftActor, pk.epoch(0))
ActorBuilder.set_thermal_model(

actor=my_actor,
actor_mass=50.0, # Setting mass to 50kg
actor_initial_temperature_in_K=273.15, # Setting initial temperature to 0°C
actor_sun_absorptance=1.0, # Depending on material, define absorptance
actor_infrared_absorptance=1.0, # Depending on material, define absorptance
actor_sun_facing_area=1.0, # Area in m2
actor_central_body_facing_area=1.0, # Area in m2
actor_emissive_area=1.0, # Area in m2
actor_thermal_capacity=1000, # Capacity in J / (kg * K)
... leaving out default valued parameters, see docs for details

)

The model is evaluated automatically during activities. You can check the spacecraft temperature with:

print(my_actor.temperature_in_K)

At the moment, only one thermal model per actor is supported. Setting a second will override the old one.

6.2.5 Radiation Modelling

PASEOS models three types of radiation effects.

1. Data corruption due to single event upsets which a event rate r_d.

2. Unexpected software faults leading to a random interruption of activities with a Poisson-distributed event rate
r_i per second

3. Device failures with a Poisson-distributed event rate r_f per second, which can be imputed mostly to single
event latch-ups

You can add a radiation model affecting the operations of the devices you are interested in with

from paseos import SpacecraftActor, ActorBuilder
my_actor = ActorBuilder.get_actor_scaffold("my_actor", SpacecraftActor, pk.epoch(0))
ActorBuilder.set_radiation_model(

actor=my_actor,
data_corruption_events_per_s=r_d,
restart_events_per_s=r_i,
failure_events_per_s=r_f,

)

You can set any of the event rates to 0 to disable that part. Only SpacecraftActors support radiation models. You can
find out if your actor has failed with

30 Chapter 6. Examples

PASEOS, Release v0.2.0

my_actor.is_dead

Interrupted activities will return as if a constraint function was no longer satisfied.

To get a binary mask to model data corruption on the local actor you can call

mask = paseos_instance.model_data_corruption(data_shape=your_data_shape,
exposure_time_in_s=your_time)

6.2.6 Custom Modelling

Beyond the default supported physical quantities (power, thermal, etc.) it possible to model any type of parameter by
using custom properties. These are defined by a name, an update function and an initial value. The initial value is used
to initialize the property. As for the other physical models, you can specify an update rate via the cfg.sim.dt cfg
parameter.

Custom properties are automatically logged in the operations monitor. Below is a simple example tracking actor
altitude.

import pykep as pk
from paseos import ActorBuilder, SpacecraftActor

Define the local actor as a SpacecraftActor of name mySat and some orbit
local_actor = ActorBuilder.get_actor_scaffold(

name="mySat", actor_type=SpacecraftActor, epoch=pk.epoch(0)
)

ActorBuilder.set_orbit(
actor=local_actor,
position=[10000000, 0, 0],
velocity=[0, 8000.0, 0],
epoch=pk.epoch(0),
central_body=pk.planet.jpl_lp("earth"), # use Earth from pykep

)

Define the update function for the custom property
PASEOS will always pass you the actor, the time step and the current power consumption
The function shall return the new value of the custom property
def update_function(actor, dt, power_consumption):

return actor.get_altitude() # get current altitude

Add the custom property to the actor, defining name, update fn and initial value
ActorBuilder.add_custom_property(

actor=local_actor,
property_name="altitude",
update_function=update_function,
initial_value=local_actor.get_altitude(),

)

One can easily access the property at any point with
print(local_actor.get_custom_property("altitude"))

6.2. Physical Models 31

PASEOS, Release v0.2.0

6.2.7 Custom Central Bodies

In most examples here you will see Earth via the pykep API being used as a spherical, central body for Keplerian orbits.
For Keplerian orbits around spherical bodies, you can simply use pykep with an type of pykep planet just as the above
examples used Earth. E.g.

import pykep as pk
from paseos import ActorBuilder, SpacecraftActor
Define an actor of type SpacecraftActor of name mySat
sat_actor = ActorBuilder.get_actor_scaffold(name="mySat",

actor_type=SpacecraftActor,
epoch=pk.epoch(0))

Define the central body as Mars by using pykep APIs.
mars = pk.planet.jpl_lp("mars")

Let's set the orbit of sat_actor.
ActorBuilder.set_orbit(actor=sat_actor,

position=[10000000, 1, 1],
velocity=[1, 1000.0, 1],
epoch=pk.epoch(0),
central_body=mars)

However, you can also use any other central body defined via a mesh. This is especially useful in conjunction with
custom propagators. To use a custom central body, you need to define a mesh and add it to the simulation configuration.
The following example shows how to do this for the comet 67P/Churyumov–Gerasimenko.

We assume polyhedral_propagator to be a custom propagator as explained in Custom Propagators.

To correctly compute eclipses, we also need to know the orbit of the custom central body around the Sun. In this case
we use the orbital elements one can find online for 67P/Churyumov–Gerasimenko.

import pykep as pk
from paseos import ActorBuilder, SpacecraftActor

Define the epoch and orbital elements
epoch = pk.epoch(2460000.5, "jd")
elements = (3.457 * pk.AU, 0.64989, 3.8719 * pk.DEG2RAD, 36.33 * pk.DEG2RAD, 22.15 * pk.
→˓DEG2RAD, 73.57 * pk.DEG2RAD)

Create a planet object from pykep for 67P
comet = pk.planet.keplerian(epoch, elements, pk.MU_SUN, 666.19868, 2000, 2000, "67P")

Load the 67P mesh with pickle
with open(mesh_path, "rb") as f:

mesh_points, mesh_triangles = pickle.load(f)
mesh_points = np.array(mesh_points)
mesh_triangles = np.array(mesh_triangles)

Define local actor
my_sat = ActorBuilder.get_actor_scaffold("my_sat", SpacecraftActor, epoch=epoch)

Set the custom propagator
ActorBuilder.set_custom_orbit(my_sat, polyhedral_propagator, epoch)

(continues on next page)

32 Chapter 6. Examples

https://esa.github.io/pykep/documentation/planets.html
https://en.wikipedia.org/wiki/Orbital_elements
https://en.wikipedia.org/wiki/67P/Churyumov%E2%80%93Gerasimenko

PASEOS, Release v0.2.0

(continued from previous page)

Set the mesh
ActorBuilder.set_central_body(my_sat, comet, (mesh_points, mesh_triangles))

Below computations will now use the mesh instead spherical approximations
print(my_sat.is_in_eclipse())
print(my_sat.is_in_line_of_sight(some_other_actor))

You could even specify a rotation of the central body.
Set a rotation period of 1 second around the z axis
ActorBuilder.set_central_body(

my_sat,
comet,
(mesh_points, mesh_triangles),
rotation_declination=90,
rotation_right_ascension=0,
rotation_period=1,

)

This is particularly useful if you want to use a central body that is not included in pykep or if you want to use a central
body that is not a planet (e.g. an asteroid).

N.B. get_altitude computes the altitude above [0,0,0] in the central body’s frame, thus is not affected by the central
body’s rotation or mesh. N.B. #2 Any custom central body still has to orbit the Sun for PASEOS to function correctly.

6.3 Simulation Settings

6.3.1 Initializing PASEOS

We will now show how to create an instance of PASEOS. An instance of PASEOS shall be bounded to one PASEOS
actor that we call local actor. Please, notice that an orbit shall be placed for a SpacecraftActor before being added to
a PASEOS instance.

6.3.2 How to instantiate PASEOS

import pykep as pk
import paseos
from paseos import ActorBuilder, SpacecraftActor
Define the local actor as a SpacecraftActor of name mySat and its orbit
local_actor = ActorBuilder.get_actor_scaffold(name="mySat",

actor_type=SpacecraftActor,
epoch=pk.epoch(0))

ActorBuilder.set_orbit(
actor=local_actor,
position=[10000000, 0, 0],
velocity=[0, 8000.0, 0],
epoch=pk.epoch(0),
central_body=pk.planet.jpl_lp("earth"), # use Earth from pykep

)
(continues on next page)

6.3. Simulation Settings 33

PASEOS, Release v0.2.0

(continued from previous page)

initialize PASEOS simulation
sim = paseos.init_sim(local_actor)

For each actor you wish to model, you can create a PASEOS instance. Running multiple instances on the same machine
/ thread is supported.

6.3.3 Using the cfg

When you instantiate PASEOS as shown in Initializing PASEOS, a PASEOS instance is created by using the default
configuration. However, sometimes it is useful to use a custom configuration.

The next code snippet will show how to start the PASEOS simulation with a time different from pk.epoch(0)
(MJD2000) by loading a custom configuration.

import pykep as pk
import paseos
from paseos import ActorBuilder, SpacecraftActor

#Define today as pykep epoch (16-06-22)
#please, refer to https://esa.github.io/pykep/documentation/core.html#pykep.epoch
today = pk.epoch_from_string('2022-06-16 00:00:00.000')

Define the local actor as a SpacecraftActor of name mySat
pk.epoch is set to today
local_actor = ActorBuilder.get_actor_scaffold(name="mySat",

actor_type=SpacecraftActor,
epoch=today)

Let's set the orbit of local_actor.
pk.epoch is set to today
ActorBuilder.set_orbit(

actor=local_actor,
position=[10000000, 0, 0],
velocity=[0, 8000.0, 0],
epoch=pk.epoch(0),
central_body=pk.planet.jpl_lp("earth"), # use Earth from pykep

)

Loading cfg to modify defaults
cfg=load_default_cfg()
Set simulation starting time by converting epoch to seconds
cfg.sim.start_time=today.mjd2000 * pk.DAY2SEC
initialize PASEOS simulation
sim = paseos.init_sim(local_actor)

You can access the current simulation time (seconds since the start) and the current epoch like this:

time_since_start_in_s = sim.simulation_time
current_epoch = sim.local_time

34 Chapter 6. Examples

PASEOS, Release v0.2.0

6.3.4 Faster than real-time execution

In some cases, you may be interested to simulate your spacecraft operating for an extended period. By default, PASEOS
operates in real-time, thus this would take a lot of time. However, you can increase the rate of time passing (i.e. the
spacecraft moving, power being charged / consumed etc.) using the time_multiplier parameter. Set it as follows
when initializing PASEOS.

cfg = load_default_cfg() # loading cfg to modify defaults
cfg.sim.time_multiplier = 10 # setting the parameter so that in 1s real time, paseos␣
→˓models 10s having passed
paseos_instance = paseos.init_sim(my_local_actor, cfg) # initialize paseos instance

6.3.5 Event-based mode

Alternatively, you can rely on an event-based mode where PASEOS will simulate the physical constraints for an amount
of time. The below code shows how to run PASEOS for a fixed amount of time or until an event interrupts it.

import pykep as pk
import paseos
from paseos import ActorBuilder, SpacecraftActor

Define the central body as Earth by using pykep APIs.
earth = pk.planet.jpl_lp("earth")

Define a satellite with some orbit and simple power model
local_actor = ActorBuilder.get_actor_scaffold("MySat", SpacecraftActor, pk.epoch(0))
ActorBuilder.set_orbit(local_actor, [10000000, 0, 0], [0, 8000.0, 0], pk.epoch(0),␣

→˓earth)
ActorBuilder.set_power_devices(local_actor, 500, 1000, 1)

Abort when sat is at 10% battery
def constraint_func():

return local_actor.state_of_charge > 0.1

Set some settings to control evaluation of the constraint
cfg = load_default_cfg() # loading cfg to modify defaults
cfg.sim.dt = 0.1 # setting timestep of physical models (power, thermal, ...)
cfg.sim.activity_timestep = 1.0 # how often constraint func is evaluated
sim = paseos.init_sim(local_actor, cfg) # Init simulation

Advance for a long time, will interrupt much sooner due to constraint function
sim.advance_time(3600, 10, constraint_function=constraint_func)

6.3. Simulation Settings 35

PASEOS, Release v0.2.0

6.4 Activities

6.4.1 Simple activity

PASEOS enables the user to register their activities that will be executed on the local actor. This is an alternative
to the event-based mode

To register an activity, it is first necessary to define an asynchronous activity function. The following code snippet
shows how to create a simple activity function activity_function_A that prints “Hello Universe!”. Then, it waits
for 0.1 s before concluding the activity. When you register an activity, you need to specify the power consumption
associated to the activity.

#Activity function
async def activity_function_A(args):
print("Hello Universe!")
await asyncio.sleep(0.1) #Await is needed inside an async function.

Once an activity is registered, the user shall call perform_activity(...) to run the registered activity. The next
snippet will showcase how to register and perform the activity activity_A.

import pykep as pk
import paseos
from paseos import ActorBuilder, SpacecraftActor
import asyncio
Define the local actor as a SpacecraftActor of name mySat and its orbit
local_actor = ActorBuilder.get_actor_scaffold(name="mySat",

actor_type=SpacecraftActor,
epoch=pk.epoch(0))

ActorBuilder.set_orbit(
actor=local_actor,
position=[10000000, 0, 0],
velocity=[0, 8000.0, 0],
epoch=pk.epoch(0),
central_body=pk.planet.jpl_lp("earth"), # use Earth from pykep

)

Add a power device
ActorBuilder.set_power_devices(actor=local_actor,

Battery level at the start of the simulation in Ws
battery_level_in_Ws=100,
Max battery level in Ws
max_battery_level_in_Ws=2000,
Charging rate in W
charging_rate_in_W=10)

initialize PASEOS simulation
sim = paseos.init_sim(local_actor)

#Activity function
async def activity_function_A(args):
print("Hello Universe!")
await asyncio.sleep(0.1) #Await is needed inside an async function.

(continues on next page)

36 Chapter 6. Examples

PASEOS, Release v0.2.0

(continued from previous page)

Register an activity that emulate event detection
sim.register_activity(

"activity_A",
activity_function=activity_function_A,
power_consumption_in_watt=10

)

#Run the activity
sim.perform_activity("activity_A")

Waiting for Activities to Finish

At the moment, parallel running of multiple activities is not supported. However, if you want to run multiple activities
in a row or just wait for the existing one to finish, you can use

await sim.wait_for_activity()

to wait until the running activity has finished.

6.4.2 Activities with Inputs and Outputs

The next code snippet will show how to register and perform activities with inputs and outputs. In particular, we will
register an activity function activity_function_with_in_and_outs that takes an input argument and returns its
value multiplied by two. Then, it waits for 0.1 s before concluding the activity. Please, notice that the output value is
placed in args[1][0], which is returned as reference.

import pykep as pk
import paseos
from paseos import ActorBuilder, SpacecraftActor
import asyncio
Define the local actor as a SpacecraftActor of name mySat and its orbit
local_actor = ActorBuilder.get_actor_scaffold(name="mySat",

actor_type=SpacecraftActor,
epoch=pk.epoch(0))

ActorBuilder.set_orbit(
actor=local_actor,
position=[10000000, 0, 0],
velocity=[0, 8000.0, 0],
epoch=pk.epoch(0),
central_body=pk.planet.jpl_lp("earth"), # use Earth from pykep

)

Add a power device
ActorBuilder.set_power_devices(actor=local_actor,

Battery level at the start of the simulation in Ws
battery_level_in_Ws=100,
Max battery level in Ws
max_battery_level_in_Ws=2000,

(continues on next page)

6.4. Activities 37

PASEOS, Release v0.2.0

(continued from previous page)

Charging rate in W
charging_rate_in_W=10)

initialize PASEOS simulation
sim = paseos.init_sim(local_actor)

#Activity function
async def activity_function_with_in_and_outs(args):
activity_in=args[0]
activity_out=activity_in * 2
args[1][0]=activity_out
await asyncio.sleep(0.1) #Await is needed inside an async function.

Register an activity that emulate event detection
sim.register_activity(

"my_activity",
activity_function=activity_function_with_in_and_outs,
power_consumption_in_watt=10,

)

#Creatie an input variable for activity
activity_in=1

#Create a placeholder variable to contain the output of the activity function.
#It is created as a list so its first value is edited
as reference by the activity function.
activity_out=[None]

#Run the activity
sim.perform_activity("my_activity",

activity_func_args=[activity_in, activity_out],
)

#Print return value
print("The output of the activity function is: ", activity_out[0])

6.4.3 Constraint Function

It is possible to associate a constraint function with each activity to ensure that some particular constraints are met
during the activity execution. When constraints are not met, the activity is interrupted. Constraints can be used, e.g., to
impose power requirements, communication windows or maximum operational temperatures. The next code snippet
shows how to:

• create a constraint function (constraint_function_A) which returns True when the local actor’s temperature
is below ~86°C and False otherwise (this requires a thermal model on the actor)

• how use constraint_function_A to constraint our Simple Activity.

import pykep as pk
import paseos
from paseos import ActorBuilder, SpacecraftActor
import asyncio
Define the local actor as a SpacecraftActor of name mySat and its orbit

(continues on next page)

38 Chapter 6. Examples

PASEOS, Release v0.2.0

(continued from previous page)

local_actor = ActorBuilder.get_actor_scaffold(name="mySat",
actor_type=SpacecraftActor,
epoch=pk.epoch(0))

ActorBuilder.set_orbit(
actor=local_actor,
position=[10000000, 0, 0],
velocity=[0, 8000.0, 0],
epoch=pk.epoch(0),
central_body=pk.planet.jpl_lp("earth"), # use Earth from pykep

)

Add a power device
ActorBuilder.set_power_devices(actor=local_actor,

Battery level at the start of the simulation in Ws
battery_level_in_Ws=100,
Max battery level in Ws
max_battery_level_in_Ws=2000,
Charging rate in W
charging_rate_in_W=10)

initialize PASEOS simulation
sim = paseos.init_sim(local_actor)

#Activity function
async def activity_function_A(args):
print("Hello Universe!")
await asyncio.sleep(0.1) #Await is needed inside an async function.

#Constraint function
async def constraint_function_A(args):
local_actor_temperature=args[0]
return (local_actor_temperature < 350)

Register an activity that emulate event detection
sim.register_activity(

"activity_A_with_constraint",
activity_function=activity_function_A,
power_consumption_in_watt=10,
constraint_function=constraint_function_A

)

#The constraint function is related to the operational temperature of the local actor.
operational_temperature_in_K=local_actor.temperature_in_K

#Run the activity
sim.perform_activity("activity_A_with_constraint",

constraint_func_args=[operational_temperature_in_K],
)

6.4. Activities 39

PASEOS, Release v0.2.0

6.4.4 On-termination Function

It is also possible to define an on-termination function to perform some specific operations when on termination of the
activity. The next code snippet shows:

• how to create an on-termination function that prints “activity (activity_A_with_termination_function) ended.”.

• How to associate our on-termination function to our Simple Activity.

The name of the activity is passed as input to the on-termination function to showcase to handle on-termination function
inputs.

import pykep as pk
import paseos
from paseos import ActorBuilder, SpacecraftActor
import asyncio
Define the local actor as a SpacecraftActor of name mySat and its orbit
local_actor = ActorBuilder.get_actor_scaffold(name="mySat",

actor_type=SpacecraftActor,
epoch=pk.epoch(0))

ActorBuilder.set_orbit(
actor=local_actor,
position=[10000000, 0, 0],
velocity=[0, 8000.0, 0],
epoch=pk.epoch(0),
central_body=pk.planet.jpl_lp("earth"), # use Earth from pykep

)

Add a power device
ActorBuilder.set_power_devices(actor=local_actor,

Battery level at the start of the simulation in Ws
battery_level_in_Ws=100,
Max battery level in Ws
max_battery_level_in_Ws=2000,
Charging rate in W
charging_rate_in_W=10)

initialize PASEOS simulation
sim = paseos.init_sim(local_actor)

#Activity function
async def activity_function_A(args):
print("Hello Universe!")
await asyncio.sleep(0.1) #Await is needed inside an async function.

#On-termination function
async def on_termination_function_A(args):
#Fetching input
activity_name=args[0]
print("Activity ("+str(activity_name)+") ended.")

Register an activity that emulate event detection
sim.register_activity(

"activity_A_with_termination_function",
(continues on next page)

40 Chapter 6. Examples

PASEOS, Release v0.2.0

(continued from previous page)

activity_function=activity_function_A,
power_consumption_in_watt=10,
on_termination_function=on_termination_function_A

)

#The termination function input is the activity name
activity_name="activity_A_with_termination_function"

#Run the activity
sim.perform_activity("activity_A_with_termination_function",

termination_func_args=[activity_name],
)

6.5 Utilities

6.5.1 Visualization

Navigate to paseos/visualization to find a jupyter notebook containing examples of how to visualize PASEOS. Visu-
alization can be done in interactive mode or as an animation that is saved to your disc. In the figure below, Earth is
visualized in the centre as a blue sphere with different spacecraft in orbit. Each spacecraft has a name and if provided,
a battery level and a communications device. The local device is illustrated with white text. In the upper-right corner,
the status of the communication link between each spacecraft is shown. Finally, the time in the lower left and lower
right corners corresponds to the epoch and the PASEOS local simulation time.

6.5. Utilities 41

PASEOS, Release v0.2.0

6.5.2 Monitoring Simulation Status

You can easily track the status of a PASEOS simulation via the monitor which keeps track of actor status.

It allows access like this

(...) # actor definition etc., see above
instance = paseos.init_sim(local_actor=my_local_actor)

(...) # running the simulation

access tracked parameters
timesteps = instance.monitor["timesteps"]
state_of_charge = instance.monitor["state_of_charge"]

6.5.3 Writing Simulation Results to a File

To evaluate your results, you will likely want to track the operational parameters, such as actor battery status, currently
running activity etc. of actors over the course of your simulation. By default, PASEOS will log the current actor status
every 10 seconds, however you can change that rate by editing the default configuration, as explained in How to use the
cfg. You can save the current log to a *.csv file at any point.

cfg = load_default_cfg() # loading cfg to modify defaults
cfg.io.logging_interval = 0.25 # log every 0.25 seconds
paseos_instance = paseos.init_sim(my_local_actor, cfg) # initialize paseos instance

Performing activities, running the simulation (...)

paseos_instance.save_status_log_csv("output.csv")

6.6 Wrapping Other Software and Tools

PASEOS is designed to allow easily wrapping other software and tools to, e.g., use more sophisticated models for
specific aspects of interest to the user. There are three ways to do this:

• Via Activities - An activity using an external software is registered and executed as any other activity, e.g. to
perform some computations while tracking runtime of that operation.

• Via Constraint Functions - A constraint function using an external software. This is useful to use a more sophis-
ticated model to check whether, e.g., a physical constraint modelled outside of PASEOS is met.

• Via Custom Properties - A custom property using an external software. This is useful to, e.g., use a more
sophisticated model for a physical quantity such as total ionization dose or current channel bandwidth.

42 Chapter 6. Examples

PASEOS, Release v0.2.0

6.6.1 Via Activities

The wrapping via activities is quite straight forward. Follow the instructions on registering and performing activities
and make use of your external software inside the activity function.

import my_external_software
#Activity function
async def activity_function_A(args):
my_external_software.complex_task_to_model()
await asyncio.sleep(0.01)

6.6.2 Via Constraint Functions

Inside constraint functions, external software can be used to check whether a constraint is met or not. This works both
for activity constraints and for constraints in event-based mode.

The constraint function should return True if the constraint is met and False otherwise.

import pykep as pk
from paseos import ActorBuilder, SpacecraftActor

import my_complex_radiation_model

Defining a local actor
local_actor = ActorBuilder.get_actor_scaffold("MySat", SpacecraftActor, pk.epoch(0))

def constraint_func():
t = local_actor.local_time
device_has_failed = my_complex_radiation_model.check_for_device_failure(t)
return not device_has_failed

Can be passed either with event-based mode, will run until constraint is not met
sim.advance_time(3600, 10, constraint_function=constraint_func)

(...)

or via activity constraints, will run until constraint is not met
N.B: this is an excerpt follow the #constraint-function link for more details
sim.register_activity(

"activity_A_with_constraint_function",
activity_function=activity_function_A,
power_consumption_in_watt=10,
constraint_function=constraint_func

)

6.6. Wrapping Other Software and Tools 43

PASEOS, Release v0.2.0

6.6.3 Via Custom Properties

Finally, custom properties can be used to wrap external software. This is useful to use a more sophisticated model for
a physical quantity, e.g. one could use a simulator like ns-3 to model the current channel bandwidth.

For more details see custom properties.

import my_channel_model

Will be automatically called during PASEOS simulation
def update_function(actor, dt, power_consumption):

Get the current channel bandwidth from the external model
channel_bandwidth = my_channel_model.get_channel_bandwidth(actor)
return channel_bandwidth

Add the custom property to the actor, defining name, update fn and initial value
ActorBuilder.add_custom_property(

actor=local_actor,
property_name="channel_bandwidth",
update_function=update_function,
initial_value=1000,

)

(... run simulation)

One can easily access the property at any point with
print(local_actor.get_custom_property("channel_bandwidth"))

44 Chapter 6. Examples

https://www.nsnam.org/

CHAPTER

SEVEN

GLOSSARY

• Activity

Activity is the abstraction that PASEOS uses to keep track of specific actions performed by an actor upon a
request from the user. >PASEOS is responsible for the execution of the activity and for updating the system status
depending on the effects of the activity (e.g., by discharging the satellite battery). When registering an activity,
the user can specify a constraint function to specify constraints to be met during the execution of the activity and
an on-termination function to specify additional operations to be performed by PASEOS on termination of the
activity function.

• Activity function

User-defined function emulating any operation to be executed in a PASEOS by an actor. Activity functions are
necessary to register activities. Activity functions might include data transmission, housekeeping operations,
onboard data acquisition and processing, and others.

• Actor

Since PASEOS is fully-decentralised, each node of a PASEOS constellation shall run an instance of PASEOS
modelling all the nodes of that constellation. The abstraction of a constellation node inside a PASEOS instance
is a PASEOS actor.

• Constraint function

A constraint function is an asynchronous function that can be used by the PASEOS user to specify some con-
straints that shall be met during the execution of an activity.

• Custom Property

Users can define their own physical quantity to track parameters not natively simulated by PASEOS. This is
described in detail above and in a dedicated example notebook on modelling total ionizing dose.

45

PASEOS, Release v0.2.0

• GroundstationActor

PASEOS actor emulating a ground station.

• Local actor

The local actor is the actor whose behaviour is modelled by the locally running PASEOS instance.

• Known actors

In a PASEOS instance, known actors are all the other actors that are known to the local actor.

• On-termination function

An on-termination function is an asynchronous function that can be used by the PASEOS user to specify some
operations to be executed on termination of the predefined PASEOS user’s activity.

• SpacecraftActor

PASEOS actor emulating a spacecraft or a satellite.

7.1 Physical Model Parameters

Description of the physical model parameters and default values in PASEOS with indications on sensitivity of param-
eters and suggested ranges.

46 Chapter 7. Glossary

PASEOS, Release v0.2.0

Name DatatypeDescription De-
fault

Suggested
Range

Sen-
sitivity

Battery Level [Ws] float Current battery level - > 0 high
Maximum Battery
Level [Ws]

float Maximum battery level - > 0 high

Charging Rate [W] float Charging rate of the battery - > 0 high
Power Device Type enum Type of power device. Can be either “So-

larPanel” or “RTG”
So-
larPanel

- medium

Data Corruption
Events [Hz]

float Rate of single bit of data being corrupted, i.e.
a Single Event Upset (SEU)

- >= 0 low

Restart Events [Hz] float Rate of device restart being triggered - >= 0 medium
Failure Events [Hz] float Rate of complete device failure due to a Single

Event Latch-Up (SEL)
- >= 0 high

Mass [kg] float Actor’s mass - > 0 low
Initial Temperature
[K]

float Actor’s initial temperature - >= 0 medium

Sun Absorptance float Actor’s absorptance of solar light - [0,1] high
Infrared Absorptance float Actor’s absportance of infrared light - [0,1] medium
Sun-Facing Area
[m^2]

float Actor’s area facing the sun - >= 0 high

Central Body-Facing
Area [m^2]

float Actor’s area facing central body - >= 0 medium

Emissive Area
[m^2]

float Actor’s area emitting (radiating) heat - >= 0 high

Thermal Capacity [$J
/ (kg * K)$]

float Actor’s thermal capacity - >= 0 low

Body Solar Irradiance
[W]

float Irradiance from the sun 1360 >= 0 medium

Body Surface Tem-
perature [K]

float Central body surface temperature 288 >= 0 low

Body Emissivity float Central body emissivity in infrared 0.6 [0,1] medium
Body Reflectance float Central body reflectance of sunlight 0.3 [0,1] medium
Heat Conversion Ra-
tio [-]

float Conversion ratio for activities, 0 leads to know
heat-up due to activity

0.5 [0,1] high

7.1. Physical Model Parameters 47

PASEOS, Release v0.2.0

48 Chapter 7. Glossary

CHAPTER

EIGHT

CONTRIBUTING

The PASEOS project is open to contributions. To contribute, you can open an issue to report a bug or to request a new
feature. If you prefer discussing new ideas and applications, you can contact us via email (please, refer to Contact). To
contribute, please proceed as follow:

1. Fork the Project

2. Create your Feature Branch (git checkout -b feature/AmazingFeature)

3. Commit your Changes (git commit -m 'Add some AmazingFeature')

4. Push to the Branch (git push origin feature/AmazingFeature)

5. Open a Pull Request

49

https://github.com/gomezzz/MSMatch/issues

PASEOS, Release v0.2.0

50 Chapter 8. Contributing

CHAPTER

NINE

LICENSE

Distributed under the GPL-3.0 License.

51

PASEOS, Release v0.2.0

52 Chapter 9. License

CHAPTER

TEN

CONTACT

Created by Φ-lab@Sweden.

• Pablo Gómez - pablo.gomez at esa.int, pablo.gomez at ai.se

• Gabriele Meoni - gabriele.meoni at esa.int, g.meoni at tudelft.nl

• Johan Östman - johan.ostman at ai.se

• Vinutha Magal Shreenath - vinutha at ai.se

53

https://www.ai.se/en/data-factory/f-lab-sweden

PASEOS, Release v0.2.0

54 Chapter 10. Contact

CHAPTER

ELEVEN

REFERENCE

If you have used PASEOS, please cite the following paper:

@article{gomez23paseos,
author = {Gómez, Pablo and Östman, Johan and Shreenath, Vinutha Magal and Meoni,␣

→˓Gabriele},
title = {{PA}seos {S}imulates the {E}nvironment for {O}perating multiple {S}pacecraft},
journal = {arXiv:2302.02659 [cs.DC]},
year = {2023},

}

55

PASEOS, Release v0.2.0

56 Chapter 11. Reference

CHAPTER

TWELVE

INDICES AND TABLES

• genindex

• modindex

• search

57

PASEOS, Release v0.2.0

58 Chapter 12. Indices and tables

PYTHON MODULE INDEX

p
paseos, 1

59

PASEOS, Release v0.2.0

60 Python Module Index

INDEX

A
ActorBuilder (class in paseos), 1
add_comm_device() (paseos.ActorBuilder static

method), 1
add_custom_property() (paseos.ActorBuilder static

method), 1
add_known_actor() (paseos.PASEOS method), 9
advance_time() (paseos.PASEOS method), 10

B
BaseActor (class in paseos), 5
battery_level_in_Ws (paseos.SpacecraftActor prop-

erty), 13
blocks_sun() (paseos.CentralBody method), 8

C
central_body (paseos.BaseActor property), 5
CentralBody (class in paseos), 8
CentralBodyInertial (paseos.ReferenceFrame at-

tribute), 13
charge() (paseos.BaseActor method), 5
charge() (paseos.SpacecraftActor method), 13
charging_rate_in_W (paseos.SpacecraftActor prop-

erty), 13
communication_devices (paseos.BaseActor property),

5
current_activity (paseos.BaseActor property), 5
custom_properties (paseos.BaseActor property), 5

D
discharge() (paseos.BaseActor method), 5
discharge() (paseos.SpacecraftActor method), 13

E
empty_known_actors() (paseos.PASEOS method), 10

F
find_next_window() (in module paseos), 15

G
get_actor_scaffold() (paseos.ActorBuilder static

method), 1

get_altitude() (paseos.BaseActor method), 5
get_cfg() (paseos.PASEOS method), 10
get_communication_window() (in module paseos), 15
get_custom_property() (paseos.BaseActor method),

6
get_custom_property_update_function()

(paseos.BaseActor method), 6
get_position() (paseos.BaseActor method), 6
get_position() (paseos.GroundstationActor method),

9
get_position_velocity() (paseos.BaseActor

method), 6
GroundstationActor (class in paseos), 9

H
has_central_body (paseos.BaseActor property), 6
has_power_model (paseos.BaseActor property), 6
has_radiation_model (paseos.BaseActor property), 7
has_thermal_model (paseos.BaseActor property), 7
Heliocentric (paseos.ReferenceFrame attribute), 13

I
is_between_actors() (paseos.CentralBody method), 8
is_between_points() (paseos.CentralBody method), 9
is_dead (paseos.SpacecraftActor property), 14
is_in_eclipse() (paseos.BaseActor method), 7
is_in_line_of_sight() (paseos.BaseActor method),

7
is_running_activity (paseos.PASEOS property), 10

K
known_actor_names (paseos.PASEOS property), 10
known_actors (paseos.PASEOS property), 10

L
load_default_cfg() (in module paseos), 16
local_actor (paseos.PASEOS property), 11
local_time (paseos.BaseActor property), 7
local_time (paseos.PASEOS property), 11
log_status() (paseos.PASEOS method), 11

61

PASEOS, Release v0.2.0

M
mass (paseos.BaseActor property), 8
mass (paseos.SpacecraftActor property), 14
model_data_corruption() (paseos.PASEOS method),

11
module

paseos, 1
monitor (paseos.PASEOS property), 11

N
name (paseos.BaseActor attribute), 8

P
paseos

module, 1
PASEOS (class in paseos), 9
perform_activity() (paseos.PASEOS method), 11
planet (paseos.CentralBody property), 9
plot() (in module paseos), 16
PlotType (class in paseos), 12
power_device_type (paseos.SpacecraftActor prop-

erty), 14
PowerDeviceType (class in paseos), 13

R
ReferenceFrame (class in paseos), 13
register_activity() (paseos.PASEOS method), 12
remove_activity() (paseos.PASEOS method), 12
remove_known_actor() (paseos.PASEOS method), 12
RTG (paseos.PowerDeviceType attribute), 13

S
save_status_log_csv() (paseos.PASEOS method), 12
set_central_body() (paseos.ActorBuilder static

method), 2
set_custom_orbit() (paseos.ActorBuilder static

method), 2
set_custom_property() (paseos.BaseActor method),

8
set_ground_station_location()

(paseos.ActorBuilder static method), 3
set_is_dead() (paseos.SpacecraftActor method), 14
set_log_level() (in module paseos), 16
set_orbit() (paseos.ActorBuilder static method), 3
set_position() (paseos.ActorBuilder static method), 3
set_power_devices() (paseos.ActorBuilder static

method), 3
set_radiation_model() (paseos.ActorBuilder static

method), 4
set_thermal_model() (paseos.ActorBuilder static

method), 4
set_time() (paseos.BaseActor method), 8
set_TLE() (paseos.ActorBuilder static method), 1

set_was_interrupted() (paseos.SpacecraftActor
method), 14

simulation_time (paseos.PASEOS property), 12
SolarPanel (paseos.PowerDeviceType attribute), 13
SpacecraftActor (class in paseos), 13
SpacePlot (paseos.PlotType attribute), 13
state_of_charge (paseos.SpacecraftActor property),

14

T
temperature_in_C (paseos.SpacecraftActor property),

14
temperature_in_K (paseos.SpacecraftActor property),

14

W
wait_for_activity() (paseos.PASEOS method), 12
was_interrupted (paseos.SpacecraftActor property),

15

62 Index

	All content
	PASEOS - PAseos Simulates the Environment for Operating multiple Spacecraft
	About the project
	PASEOS space environment simulation
	Installation
	pip / conda
	Building from source
	Using Docker

	Examples
	Actors
	Create a PASEOS actor
	Local and Known Actors

	Physical Models
	Set an orbit for a PASEOS SpacecraftActor
	Keplerian Orbit
	SGP4 / Two-line element (TLE)
	Custom Propagators
	Accessing the orbit

	How to add a communication device
	How to add a power device
	Thermal Modelling
	Radiation Modelling
	Custom Modelling
	Custom Central Bodies

	Simulation Settings
	Initializing PASEOS
	How to instantiate PASEOS
	Using the cfg
	Faster than real-time execution
	Event-based mode

	Activities
	Simple activity
	Waiting for Activities to Finish

	Activities with Inputs and Outputs
	Constraint Function
	On-termination Function

	Utilities
	Visualization
	Monitoring Simulation Status
	Writing Simulation Results to a File

	Wrapping Other Software and Tools
	Via Activities
	Via Constraint Functions
	Via Custom Properties

	Glossary
	Physical Model Parameters

	Contributing
	License
	Contact
	Reference
	Indices and tables
	Python Module Index
	Index

